
1 INTRODUCTION 

1.1 General 
In the reliability analysis of a bridge structure, traffic 
induced load effects are some of the most variable 
parameters. Because of this, more accurate estima-
tion of the distributions of traffic load effect can re-
sult in a significant improvement in the accuracy of 
calculated safety levels.  

For the short- to medium-span bridges considered 
in this study, free-flowing traffic, including dynamic 
interaction between the vehicles and bridge, gener-
ally governs extreme load effect. In assessing such 
loading, it is common to measure the traffic at the 
site, parameterize the statistical distributions of traf-
fic characteristics, and use Monte Carlo simulation 
to artificially extend the measurements, since they 
are expensive to obtain. Typically, this data forms 
the basis for a subsequent extreme value analysis. 

This paper provides a means to improve the ex-
treme value analysis though use of a more general 
extreme value distribution. It does so, within the 
framework of a recently proposed method which ac-
counts for the different distribution of load effect 
caused by different types of loading event. 

1.2 Extreme Value Theory 
There are two main methods of extreme value theory 
(EVT) (Coles 2001). The block maxima approach 
uses the maximum of the data obtained for a block 

(a period of time). The block must be longer than the 
period of any underlying variation in the statistical 
process, such as hourly traffic flow rates. Many such 
blocks give a population of maxima to which the 
Generalized Extreme Value (GEV) distribution (in-
corporating the Fisher-Tippett families) is applied. 

The block maxima approach is wasteful of data; 
measurements may be taken throughout the period 
and yet only lead to a single data point: the maxi-
mum. Also, the second highest value in one block 
may be larger than the highest of another block and 
this is not accounted for generally.  

The Peaks Over Threshold (POT) approach 
avoids some of the problems of the block maxima 
method through use of the Generalized Pareto Dis-
tribution (GPD). However, it involves the choice of 
a threshold on which the results depend. 

Importantly, the choice of EVT method is usually 
subjective whilst the results of the two methods are 
generally different. Recently, the Box-Cox-GEV 
model has been proposed by Bali (2003). This model 
encompasses both the GEV and GPD distributions 
and thus the two main approaches of EVT. There-
fore, in applying this model, the data itself deter-
mines the most appropriate form of EVT analysis. 

1.3 Bridge Traffic Load Effect Prediction 
In the literature on bridge traffic load effect estima-
tion, load effects have been found from directly-
measured traffic; Monte Carlo simulated traffic, and; 
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convoluted traffic. It is the methods of extrapolating 
this load effect data that is of interest here. 

In the background studies for the development of 
the Eurocode for bridge loading (EC1.2 2003), Bruls 
et al. (1996) and Flint & Jacob (1996) consider vari-
ous methods of extrapolation, including: 
− a half-normal curve fitted to the histogram tail; 
− a Gumbel distribution fit to the histogram tail;  
− Rice’s formula for a stationary Gaussian process; 
Other authors usually consider only one approach. 

1.3.1 Use of Parent Distributions 
In the papers Nowak (1989) and Nowak & Hong 
(1991), straight lines are fit to the tails of the load ef-
fect distributions plotted on normal probability pa-
per. Instead, Nowak uses curved lines to extrapolate 
for the load effects of various return periods in 
Nowak (1993) and Nowak (1994). 

Rice’s formula has been used extensively in the 
literature (Flint & Jacob 1996, Cremona 2001). This 
method involves the choice of a threshold; Cremona 
(2001) develops an optimal level at which to set the 
threshold, based on minimization of the Kolmo-
gorov-Smirnov statistic. 

1.3.2 Use of Distribution of Maximum 
Nowak (1993) determines the distribution of maxi-
mum load effect by raising the parent distribution of 
load effect to an appropriate power. In this way he 
determines the mean and coefficient of variation of 
the maximum load effect. 

Fu & Hag-Elsafi (1995) describe a probabilistic 
convolution method to obtain bending moments for 
single truck events. They then obtain the distribution 
of maximum load effect by raising the parent distri-
bution to an appropriate power. 

Ghosn & Moses (1985) use a 2.4 hour maximum 
as their extreme data which is then fitted using a 
normal distribution on normal probability paper. 
This distribution is then raised to the appropriate 
power obtain the 50-year load effect distribution. 

1.3.3 Use of Extreme Value Theory 
Buckland et al. (1980) use a Gumbel distribution to 
fit 3-monthly maximum load effect which is then 
used to extrapolate to the return periods of interest. 
Similarly, Cooper (1995, 1997) raises the distribu-
tion of measured load effect to a power to get the 
4.5-day distribution of maximum load effect. This is 
modeled with a Gumbel distribution, which is used 
to extrapolate to a 2400-year return period. 

Bailey & Bez (1994 and 1999) determine that the 
Weibull distribution is most appropriate to model 
load effect tails and used maximum likelihood esti-
mation. In Moyo et al. (2002), daily maximum 
bridge strain measurements are fit to a Gumbel dis-
tribution using least-squares on probability paper. 

Lastly, but notably, Crespo-Minguillón & Casas 
(1997) adopt the POT approach and use the GPD to 

model the exceedances of weekly maximum traffic 
load effect over a threshold. An optimal threshold is 
selected based on the overall minimum least-squares 
value, and the distribution corresponding to this 
threshold is used as the basis for extrapolation. 

1.3.4 Summary 
From this brief review of the literature, it is apparent 
that there is a wide range of methods used in the es-
timation and prediction of load effect. Many are 
quite subjective and this influences the load effect 
predictions. However, the trend in recent years is 
towards the full implementation of EVT. Doing so 
removes much subjectivity lending further confi-
dence to the resulting load effect predictions. 

2 THEORETICAL BASIS 

2.1 Basis for Estimation  
The passage of vehicles over a bridge imparts load 
effect to the structure. We consider individual load-
ing events as events that occur between periods of 
no truck-traffic on the bridge. During such events, a 
history of load effect is determined, the maximum 
value of which is retained for further analysis. It is 
usual to use influence lines for the calculation of 
load effect and so it is load effect at a particular lo-
cation in the structure that is determined, which is 
not necessarily the maximum value occurring. 

2.2 Conventional Approach 
For later comparison we develop here a synthesis of 
the current state of the art, as previously discussed. 
We term this a generic ‘conventional approach’. We 
consider that the population of load effect data relat-
ing to individual loading events is processed to find 
the absolute maximum value of load effect per day, 
for each load effect considered. Also, maximum 
likelihood estimation is used to fit a GEV distribu-
tion to this population of maxima. This synthesized 
approach removes many of the sources of subjectiv-
ity in the current literature, such as: choice of popu-
lation; the extreme value distribution used; the 
means of estimation; and the choice of threshold. 

2.3 Composite Distribution Statistics 

An important assumption of classical EVT is that the 
statistical mechanism is independent and identically 
distributed (iid) – though some interdependence is 
tolerable (Galambos 1978). Caprani et al. (2008) 
have shown that the iid assumption is not valid for 
bridge loading events. In particular, as is intuitively 
reasonable, the distribution of load effect for two 
trucks concurrently present on the bridge (a 2-truck 
event) is quite different from that of three-trucks (a 



3-truck event). Separating the loading event types, 
the exact distribution of load effect (from the Theo-
rem of Total Probability) is: 
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where S is load effect; Fi(·) is the cumulative distri-
bution function (CDF) of loading event-type i which 
has frequency of occurrence fi; there are nd number 
of loading events per day, and; N loading event 
types to be considered. Caprani et al. (2008) show 
that this distribution asymptotically approaches a 
composite distribution statistics (CDS) model, GC(·): 
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where Gi(·) is any extreme value distribution.  When 
the block maxima method is used, the GEV distribu-
tion for loading event type i is: 
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where [h]+ = max(h, 0) and the parameters, µi, σi, ξi, 
are found by fitting to the load effect data of loading 
event type i solely.  

Typical use of the CDS method involves the daily 
maximum load effect for each loading event type, to 
which separate GEV fits are made. The final distri-
bution of load effect then is found from Equation 2. 

The CDS approach can be applied to any extreme 
value distribution that meets the stability postulate 
(Caprani et al. 2008). 

2.4 The Box-Cox-GEV Model 

Bali (2003) introduces the Box-Cox-GEV (BCGEV) 
extreme value distribution: 
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The parameters of this distribution are those of the 
GEV distribution (µ, σ, ξ) and a ‘model parameter’, 
λ. As 1λ → , the BCGEV converges to the GEV 
distribution. Conversely, as 0λ → , by L’Hopital’s 
Rule, the BCGEV converges to the GPD. To apply 
this model a high threshold is set on the parent dis-
tribution. Bali (2003) uses a threshold of two stan-
dard deviations about the sample mean. 

Bali & Theodossiou (2008) found that maximum 
likelihood estimation of the BCGEV parameter is 

not robust and this has been found to be the case for 
this work also. Therefore, estimation has been car-
ried out using nonlinear regression, as proposed by 
Bali (2003). Arranging the data in increasing order, 
s1≤…sr≤…sn, we compare the expected value of 
H(s) for each data point to its empirical value: 
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Substitution of Equation 4, followed by twice taking 
logarithms and by adding a residual (or error) term, 
η, we get the nonlinear regression equation: 
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By minimizing the sum of the squared residuals 
(SSR), Σηi

2, parameter estimates are obtained. Then, 
because the GEV and GPD models are nested in the 
BCGEV model, the likelihood ratio test can be used 
to determine, for a given significance level, whether 
the GEV or GPD model is appropriate. 

2.5 Likelihood Ratio Test 

Huet et al. (2003) describe the use of the likelihood 
ratio for nonlinear regression models. Using the 
standard error of regression (SER), defined as the 
mean SSR (SSR/n), the likelihood ratio (LR) statis-
tic for nested models is given by: 

( )LR logSER logSERP Fn= −  (8) 

where the subscript P refers to the partial model (the 
GEV or GPD distribution) and F refers to the full 
model (BCGEV). This LR statistic is approximately 
χ2-distributed with one degree of freedom. 

The hypothesis that the considered partial model 
is adequate to describe the data is rejected if the LR 
statistic is greater than the critical value at a signifi-
cance level of 1-α. In the following we consider the 
5% and 1% significance levels, the critical values 
for which are 3.842 and 6.635. 

3 APPLICATION TO BRIDGE TRAFFIC LOAD 
EFFECT 

3.1 Description of Study 

3.1.1 Traffic Data Basis 
Five working days of weigh-in-motion data was 
taken from the A6 Paris to Lyon motorway near 
Auxerre, France. Truck traffic characteristics, such 
as weight and dimensional data, were collected for 



36,373 trucks, travelling in the two slow lanes. 
These characteristics were statistically modeled 
(Caprani 2005) for use as the basis of Monte Carlo 
simulation. The model used for the distribution of 
headways is particularly important and is described 
by OBrien & Caprani (2005). 

We consider bridges with only two opposing 
lanes of lengths in the range 20 to 50 m. The load ef-
fects examined are: 
− Load Effect 1: Bending moment at the mid-span 

of a simply-supported bridge; 
− Load Effect 2: Bending moment at the central 

support of a two-span continuous bridge; 
− Load Effect 3: Left hand shear in a simply-

supported bridge. 
Monte Carlo simulation was used to generate a 

1000-day period of truck traffic. This truck traffic 
was used to determine the load effect values for the 
bridges and load effects considered. Only significant 
crossing events, defined as multiple-truck presence 
events and single truck events where the vehicle’s 
Gross Vehicle Weight (GVW) is in excess of 40 
tonnes, were processed to minimize computing re-
quirements. For such events, the comprising truck(s) 
are moved in 0.02 second intervals across the bridge 
and the maximum load effects of interest identified. 
The set of 1000 daily maximum load effect values 
for each loading event type were determined. This 
enables the direct application of the block maxima 
approach, and also provides a sufficiently large data 
set for the BCGEV and POT approaches. 

3.1.2 Overview of Analysis 
The load effect data for three load effects, for bridge 
lengths of 20, 30, 40, and 50 m, and for each event 
type resulted in 41 sets of daily maxima. Load ef-
fects were noted for the different loading event types 
to allow application of the CDS method. 

We consider there to be 250 working days per 
year, and extrapolate load effects to determine the 
return level for a return period of 1000 years, as 
specified by the Eurocode (EC1.2 2003). We stress 
that this is not the design life of the structure, which 
may be taken as 50 or 100 years. In such cases the 
probability load effect exceeding the return level is 
approximately 5% and 10% respectively.  

3.1.3 Box-Cox-GEV Model Analysis 
The BCGEV model is applied to the complete 
bridge length and load effect data set for a set of 11 
thresholds. These thresholds are taken in steps of 0.5 
standard deviations from 2.5k = −  standard devia-
tions to 2.5k = +  standard deviations about the sam-
ple mean.  

As Bali (2003) discusses, estimation of the model 
parameter, λ, is not generally robust. Therefore, to 
properly determine the behaviour of the model with 
respect to λ, the estimation was carried out for val-
ues of λ from 0 to 1 in steps of 0.01. The value of λ 

= 0 (the GPD) was approximated by setting λ = 
0.001 for ease of numerical implementation. 

In total, over 45 000 nonlinear regressions were 
performed to calculate the optimum fits for the 
BCGEV in this study. 

3.2 Application of the Box-Cox-GEV Model 

3.2.1 Residuals and Model Parameters 
For each threshold and for each value of the model 
parameter, the SSR is calculated. Figure 1 shows 
this data for the first threshold, 2.5k = −  (which is 
essentially all the data). Also shown in this figure is 
the mean SSR from the 41 sets of SSR for each λ. 
Figure 2 shows this mean SSR for each threshold 
and λ considered. As may be seen, the best fit to the 
data, on average, is for a threshold of 1.5k = −  stan-
dard deviations from the sample mean and a model 
parameter of 0.98. 
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Figure 1. SSRs (gray lines) and mean SSR (heavy black line) 
for the lowest threshold, k = -2.5. 
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Figure 2. Mean SSR by threshold and model parameter. 
Of particular interest are the values of the model pa-
rameter, λ, that minimize the SSR and provide the 



best fit to the data as these indicate the attraction of 
the data to the GEV or GPD domains. For each 
threshold, and for the 41 sets of data, the optimum 
model parameters are shown in Figure 3, along with 
their mean value of λ as it varies with threshold. Of 
note from this figure is that all values of λ are con-
tained in the interval [0.91, 1]. Empirically then, it 
seems that the bridge traffic load effect considered is 
in the domain of attraction of the GEV, or block 
maxima, model. However, we must test the statisti-
cal significance of this finding. 
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Figure 3. Mean SSR by threshold and model parameter 
(points); average of mean SSRs (line). 

 

3.2.2 Domain of Attraction Significance Testing 
Using the likelihood ratio test, the statistical signifi-
cance of the BCGEV results is assessed. For each 
threshold, the 41 results are shown for the GEV and 
GPD models in Figures 4 and 5 respectively. Noting 
that the y-scale in these figures is logarithmic, these 
figures demonstrate that neither the GEV nor GPD 
models are appropriate within typical significance 
values for a wide range of thresholds. In particular, 
it is also evident that the GEV may be used within 
statistical significance for thresholds above k ≈ +1.5; 
this is not true of the GPD model. 

3.2.3 Load Effect Prediction 
The optimum BCGEV parameter sets for each of the 
41 data sets are used with the CDS method to predict 
lifetime load effect for the lengths and effects con-
sidered. With 250 days per year, the 1000-year re-
turn period corresponds to a probability of: 

( )* 1 1 250 1000 0.999996p = − ⋅ =  (9) 

The return level is then found from: 
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where the CDS distribution is: 
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and ( )iH ⋅  is the BCGEV distribution for loading 
event type i, given by Equation 4. A numerical root-
finding algorithm is required to determine the return 
level due to the complexity of Equation 10. 

The BCGEV lifetime load effect predictions are 
given in Figure 6 for the range of thresholds consid-
ered. It can be seen that the predictions are reasona-
bly stable for thresholds in the range k = [-2.5,-1]. 
Once the threshold increases beyond the sample 
mean (k = 0) the predictions become unstable due to 
the reducing size of the data set. 

Based on this last result, and the result that the 
model parameter is, on average, a minimum at a 
threshold of k = -1.5, it seems that a threshold of k = 
-1.5 is appropriate for application to daily maximum 
data. Therefore this threshold is used further in this 
study as a ‘global optimum’ threshold. 
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Figure 4. LR statistics for the GEV model, showing the mean 
LR value. 
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Figure 5. LR statistics for the GPD model, showing the mean 
LR value. 
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Figure 6. Box-Cox-GEV prediction of lifetime load effect for various thresholds, for Load Effects (a) 1, (b) 2, (c) 3. 
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Figure 7. Comparison of load effect estimation methods for each load by bridge length, for Load Effects (a) 1, (b) 2, (c) 3. 

 

3.3 Comparison of Estimations 

3.3.1 Basis 
Due to the results presented in Section 3.2, the GPD 
model is not considered further. Three methods for 
the estimation of bridge traffic load effect are next 
applied and the results compared: 
1. The conventional approach which reflects cur-

rent literature, as explained in Section 2.2. This 
method does not allow for the different distribu-
tions of loading event by type. 

2. The block maxima approach, using the CDS for-
mulation of Equations 2 and 3 applied to the 
complete set of daily maximum load effect data 
for each loading event type. 

3. The Box-Cox-GEV distribution, using a CDS 
formulation to account for the different loading 
event types. Two thresholds will be considered: 

the ‘global optimum’ identified as k = -1.5; and 
the ‘all data’ value of k = -2.5, for a fairer com-
parison with the other non-threshold models. 

The predicted load effects are given in Table 1. 

3.3.2 Results by Bridge Length 
Figure 7 shows the predictions for the various meth-
ods against bridge length. There is reasonable con-
sistency of the estimation methods, but for Load Ef-
fect 2 at a bridge length of 40 m. For this load effect 
(bending moment over the central support of a two-
span continuous bridge), and at such lengths a criti-
cal combination of small headway, vehicle length 
and influence line shape can occur. In this situation, 
3- and 4-truck events mainly govern (Caprani 2005). 
One such loading event is shown in Figure 8. 

The CDS distribution, and the comprising 
BCGEV fits (k = -1.5) to individual loading event-
types are shown in Figure 9 for Load Effect 2, 
bridge length 40 m. It can be seen that 4-truck 



events, while not critical during the period of simu-
lation, govern the extreme load effect. Further, the 
BCGEV distribution of the 4-truck event daily 
maximum data exhibits a Fréchet tail, which is un-
bounded. This accounts for the large return level 
predicted. However, such a tail is unreasonable since 
bridge loading events surely have a physical bound 
and therefore a Weibull (bounded) tail. Imposition 
of an optimization restraint to ensure a Weibull tail 
is possible (and should be done by practitioners) but 
is not done in this investigatory work. 

 

 
Figure 8. Sample 4-truck loading event on a 2-span 40 m long 
bridge – a critical combination for Load Effect 2 (GVW in 
kg/100 shown on trucks). 
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Figure 9. Load Effect 2, length 40 m Gumbel paper plot of in-
dividual loading event-type (1-truck, 2-truck etc.) data and 
BCGEV distributions and CDS distribution. 

3.3.3 Results by Percentage Comparison 
Using the conventional approach as the basis for 
comparing the impact of the models proposed in this 
paper, the percentage differences are given in Table 
1 and plotted in Figure 10. From these sources there 
are two main points to note. Firstly, with only two 
exceptions, all predictions lie within +9% and -5% 
of the conventional value. Secondly, both BCGEV 
applications give higher load effects on average than 
the conventional method, in contrast to the GEV 
model which, on average, gives values lower than 
the conventional method. 
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Figure 10. Differences in estimation methods for Load Effects 
(a) 1, (b) 2*, (c) 3. *+50.7% outlier for length 40 m not shown.

 
Table 1.  Load effect predictions and percentage differences.  

 
Bridge 
Length 
(m) 

Conventional 
Method GEV with CDS* Box-Cox-CGEV with CDS 

(k = -2.5)* 
Box-Cox-CGEV with CDS 
(k = -1.5)* 

20 4059 4060 (0) 4152 (2.3) 4178 (2.9)
30 7858 7848 (-0.1) 8275 (5.3) 8530 (8.6)
40 10,733 10,691 (-0.4) 10,893 (1.5) 10,993 (2.4)

Load Effect 1 
(kNm) 

50 14,141 13,860 (-2) 14,632 (3.5) 15,007 (6.1)
20 1064 1065 (0.1) 1129 (6.1) 1145 (7.6)
30 1720 1643 (-4.5) 1685 (-2) 1699 (-1.2)
40 3296 2812 (-14.7) 3536 (7.3) 4969 (50.7)

Load Effect 2 
(kNm) 

50 3941 3782 (-4) 4026 (2.2) 4216 (7)
20 920 920 (0.1) 965 (4.9) 991 (7.8)
30 960 960 (0) 972 (1.2) 978 (1.8)
40 1086 1077 (-0.8) 1121 (3.2) 1148 (5.7)Load Effect 3 

(kN) 50 1195 1185 (-0.9) 1229 (2.8) 1251 (4.7)
Mean Difference  (-2.3) (3.2) (4.9)**
*  Percentage differences relative to the conventional method are given in parentheses. 
**  Excluding outlier of 50.7% for Load Effect 2, length 40 m - including this outlier gives a mean of 8.7% difference. 



4 CONCLUSIONS 

This paper has applied a recently-developed statisti-
cal model to the bridge traffic load effect problem.  
This Box-Cox-GEV model, through inference on the 
data itself, determines the most appropriate form of 
extreme value analysis. The generally subjective de-
cision as to the choice of extreme value models, 
block maxima or peaks-over-threshold, is therefore 
avoided. In addition, a recently-introduced means of 
allowing for different loading event types – compos-
ite distribution statistics – has been applied to the 
Box-Cox-GEV model for a more sympathetic adher-
ence to the underlying statistical mechanism. Com-
parison has been drawn between the load effect pre-
dictions that result from the application of a 
conventional approach, reflective of the literature, 
and the newly proposed modeling process. 

In this study, it has been found that the Box-Cox-
GEV model better fits the data than the competing 
GEV and GPD models with considerable statistical 
significance, for almost all thresholds considered. 
However, it has also been found that the data studied 
lies strongly in the domain of attraction of the GEV 
model. An optimum threshold level to apply to daily 
maximum load effect has been identified. Further, it 
was found that for thresholds near the sample mean 
and above, load effect predictions become unstable. 
For thresholds below this, predictions are quite sta-
ble and the model thus deemed robust in this region. 

In comparison to the conventional and recently 
proposed (GEV) methods, application of the Box-
Cox-GEV model gives higher load effects on aver-
age. Within the framework of composite distribution 
statistics, the Box-Cox-GEV model was found to be 
more sensitive to governing loading event types (as 
evidenced by the bridge length 40 m and Load Ef-
fect 2 prediction) than the competing GEV model. 
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